Ergodic Theory - Week 1

Course Instructor: Florian K. Richter Teaching assistant: Konstantinos Tsinas

1 Measure Preserving Systems

P1. Let (X, \mathcal{A}, μ) be a probability space, and let $T: X \to X$ be a measurable map. Show that T preserves μ if and only if

$$\int f \circ T \ d\mu = \int f d\mu \tag{1}$$

holds for any $f \in L^1(X)$.

Optional: If X is a Polish space (Hausdorff completely metrizable topological space) and μ is a Borel probability measure on X show that it suffices to check (1) for any $f \in C(X)$.

Hint: Use the fact that any finite Borel measure on a Polish space is regular, namely for any measurable set A and any $\varepsilon > 0$ there exist open U and compact K such that $K \subseteq A \subseteq U$ and $\mu(U \setminus K) < \varepsilon$.

Assume that T preserves μ . Then (1) holds for indicator functions. Indeed, for any $A \in \mathcal{A}$,

$$\int \mathbb{1}_A \circ T \, d\mu = \int \mathbb{1}_{T^{-1}A} \, d\mu = \mu(T^{-1}A) = \mu(A) = \int \mathbb{1}_A \, d\mu.$$

Consequently, (1) holds for simple functions, i.e. functions of the form $f = \sum_{i=1}^k a_i \mathbb{1}_{A_i}$, where $k \in \mathbb{N}, a_i \in \mathbb{C}$ and $A_i \in \mathcal{A}$ for any i = 1, ..., k. Now let $f \in L^1(X)$. Then there exists a sequence of simple functions $(f_n)_{n \in \mathbb{N}}$ converging to f in $L^1(X)$. Then

$$\int f\circ Td\mu = \lim_{n\to\infty} \int f_n\circ Td\mu = \lim_{n\to\infty} \int f_n d\mu = \int fd\mu.$$

Conversely, assume that (1) holds for any $f \in L^1(X)$. Then for any $A \in \mathcal{A}$, applying (1) for $f = \mathbb{1}_A$ yields $\mu(T^{-1}A) = \mu(A)$, showing that T preserves μ . Now suppose that holds for any $f \in L^1(X)$.

Now, suppose X is a Polish space and assume that (1) holds for continuous functions, and let $f = \mathbbm{1}_A \in L^1(X)$. Since C(X) is dense in $L^1(X)$, there exists a sequence $(f_n)_n \in \mathbb{N}$ of continuous functions converging to f. Moreover, this sequence can be taken bounded, given that thanks to the regularity of μ (given that X is Polish), we can always find a closed set F and an open set U such that $F \subseteq A \subseteq E$ and $\mu(U \setminus F) < 1/n$, thus we can take

$$f_n(x) = \frac{d(x, U^c)}{d(x, U^c) + d(x, F)},$$

which is such that $||f_n - f||_1 < 1/n$ for every n. Then, using the Dominated Convergence

$$\int f \circ T d\mu = \int \lim_{n \to \infty} f_n \circ T d\mu = \lim_{n \to \infty} \int f_n \circ T d\mu = \lim_{n \to \infty} \int f_n d\mu = \int \lim_{n \to \infty} f_n d\mu = \int f d\mu.$$

P2. Let (X_1, A_1, μ_1, T_1) and (X_2, A_2, μ_2, T_2) be measure preserving systems. Prove that the product system $(X_1 \times X_2, \mathcal{A}_1 \otimes \mathcal{A}_2, \mu_1 \otimes \mu_2, T_1 \times T_2)$ is also measure-preserving.

Observe that for any sets $A_1 \in \mathcal{A}_1, A_2 \in \mathcal{A}_2$, we have

$$(\mu_1 \times \mu_2)((T_1 \times T_2)^{-1}(A_1 \times A_2)) = \mu_1(T_1^{-1}A_1)\mu_2(T_2^{-1}A_2) = \mu_1(A_1)\mu_2(A_2) = (\mu_1 \times \mu_2)(A_1 \times A_2).$$

The σ -algebra $\mathcal{A}_1 \otimes \mathcal{A}_2$ is generated by the algebra of the sets $A_1 \times A_2$ with $A_1 \in \mathcal{A}_1, A_2 \in \mathcal{A}_2$ and in this algebra, the measure $\mu_1 \times \mu_2$ and the pushforward measure $(T_1 \times T_2)(\mu_1 \times \mu_2)$ defined by $(T_1 \times T_2)(\mu_1 \times \mu_2)(A) = (\mu_1 \times \mu_2)((T_1 \times T_2)^{-1}(A))$ take identical values. Thus, by Carathéodory's Theorem, we have that these measures are equal on $A_1 \otimes A_2$ which establishes

- **P3.** We consider the torus with the Borel σ -algebra and the Lebesgue measure.
 - (a) Show that for any $a \in \mathbb{R}$, the map $Tx = x + a \pmod{1}$ preserves the Lebesgue measure.

e will use the first exercise for this. It suffices to show that for any continuous function

$$\int_{\mathbb{T}} f(Tx) \ d\lambda(x) = \int_{\mathbb{T}} f(x) \ d\lambda(x).$$

We can extend f periodically modulo 1, so that f is a 1-periodic continuous function. The previous equality can be rewritten as

$$\int_0^1 f(x+a) \ dx = \int_0^1 f(x) \ dx.$$

$$\int_{0}^{1} f(x+a) \ dx = \int_{a}^{1+a} f(x) \ dx = \int_{a}^{1} f(x) \ dx + \int_{1}^{1+a} f(x) \ dx = \int_{0}^{1} f(x) \ dx + \int_{0}^{a} f(x) \ dx = \int_{0}^{1} f(x) \ dx$$
 using the 1-periodicity of f .

(b) For each $p \in \mathbb{N}$ we define the map $T_p x = px \pmod{1}$ for all $x \in [0,1)$. Show that the transformation T_p preserves the Lebesgue measure.

In view of the first exercise, it suffices to show that for any continuous function $f: \mathbb{T} \to \mathbb{C}$

$$\int_{\mathbb{T}} f \circ T_p \ d\lambda = \int f \ d\lambda.$$

The function f is 1-periodic so we have

The function
$$f$$
 is 1 periodic so we have
$$\int_0^1 f(px) \ d\lambda(x) = \int_0^{\frac{1}{p}} f(px) \ dx + \dots + \int_{\frac{p-1}{p}}^1 f(px) \ dx = \frac{1}{p} \int_0^1 f(x) \ dx + \dots + \frac{1}{p} \int_{p-1}^p f(x) \ dx = \frac{1}{p} \int_0^1 f(x) dx + \dots + \frac{1}{p} \int_0^1 f(x) dx = \int_0^1 f(x) dx,$$
 where we used the 1-periodicity of f in the penultimate step.

P4. Let (X, \mathcal{A}, μ) be a probability space and let $T: X \to X$ be an invertible measure preserving transformation (with respect to μ). Now, at any moment, instead of moving forward by T (that is, instead of looking at the map $x \to Tx$, we flip a fair coin to decide whether we will use T or T^{-1} .

The goal is to describe the random system described above by means of a measure-preserving system. In particular, we want to find a map R such that given a point x and a sequence of coin tosses ω , we would have that $R(\omega, x)$ would produce the same result as the procedure above.

(a) Find a probability space (Y, \mathcal{B}, v) and a measure preserving map S that models the sequence of coin tosses.

Consider $\Omega = \{0,1\}^{\mathbb{N}}$ with the Borel σ -algebra \mathcal{B} generated by cylinder sets and the uniform product measure v. Thus, for any finite string (a_1, \ldots, a_k) of 0's and 1's, we have

$$v\left(\left\{\omega\in\Omega:\omega_1=a_1\ldots\omega_k=a_k\right\}\right)=\frac{1}{2^k}.$$

We endow this space with the left-shift S (that is $S\omega$ is the sequence such that $S\omega(n) =$ $\omega(n+1)$ for all $n \in \mathbb{N}$), which preserves the measure v. This models the sequence of fair coin tosses. Indeed, for any element ω of the sample space (i.e. a sequence of coin tosses), the first coordinate of $S^n\omega$ is the outcome of the *n*-th coin toss.

(b) Consider the product system $(X \times Y, \mathcal{A} \times \mathcal{B}, \mu \times v)$. Define a measure-preserving map R on this product space that models the original random system.

We consider the product space $Y = \Omega \times X$ with the product σ -algebra $\mathcal{B} \times \mathcal{A}$ and the product measure $\lambda = v \times \mu$. On this space, we define the map $R(\omega, x) = (S\omega, T^{2\omega_1 - 1})$, where ω_1 is the first coordinate of ω . We will prove that this transformation preserves the measure λ and it models the random walk system described in the exercise. Indeed, given any sequence of coin tosses ω , the transformation R checks the first coordinate of ω and applies T if $\omega_1 = 1$ and T^{-1} if $\omega_1 = 0$. Then, it shifts the sequence ω to the next coordinate (the next coin toss).

We prove that R preserves the measure λ . We will only need to prove that this holds for sets of the form $B \times A$, where $B \in \mathcal{B}$ and $A \in \mathcal{A}$, since these generate the product

-algebra. Then, we have

$$\begin{split} \lambda(R^{-1}(B\times A)) &= \lambda\left(\{R(\omega,x)\in B\times A\}\right) \\ &= \lambda\left(\{R(\omega,x)\in B\times A,\omega_1=0\} \cup \{R(\omega,x)\in B\times A,\omega_1=1\}\right) \\ &= \lambda\left(\{R(\omega,x)\in B\times A,\omega_1=0\}\right) + \lambda\left(\{R(\omega,x)\in B\times A,\omega_1=1\}\right) \\ &= \lambda\left((\omega,x)\colon \omega_1=0, S\omega\in B, T^{-1}x\in A\right) + \lambda\left((\omega,x)\colon \omega_1=1, S\omega\in B, Tx\in A\right) \\ &= \lambda\left(\left(\{\omega_1=0\}\cap S^{-1}B\right)\times T(A)\right) + \lambda\left(\left(\{\omega_1=0\}\cap S^{-1}B\right)\times T^{-1}(A)\right) \\ &= v\left(\left(\{\omega_1=0\}\cap S^{-1}B\right)\right)\mu(T(A)) + v\left(\left(\{\omega_1=1\}\cap S^{-1}B\right)\right)\mu(T^{-1}(A)) \\ &= v\left(\left(\{\omega_1=0\}\cap S^{-1}B\right)\right)\mu(A) + v\left(\left(\{\omega_1=1\}\cap S^{-1}B\right)\right)\mu(A) \\ &= v(S^{-1}B)\mu(A) = v(B)\mu(A) = \lambda(B\times A), \end{split}$$
 where we used the fact that $\mu(TA) = \mu(T^{-1}A) = \mu(A)$ because T, T^{-1} are measure

- **P5.** A set $R \subseteq \mathbb{Z}$ is a set of recurrence if for every measure-preserving system (X, \mathcal{A}, μ, T) and for all $A \in \mathcal{A}$ with $\mu(A) > 0$ we have $\mu(A \cap T^{-n}A) > 0$ for some $n \in R \setminus \{0\}$.
 - (a) Show that $2\mathbb{N}$ is a set of recurrence but $2\mathbb{N} + 1$ is not.

Let (X, \mathcal{A}, μ, T) be any measure preserving system. Consider the system $(X, \mathcal{A}, \mu, T^2)$ which is also measure preserving and for which Poincaré's Recurrence Theorem asserts that \mathbb{N} is a set of recurrence for this system. Thus, there is some $n \in \mathbb{N}$ such that $\mu(A \cap T^{-2n}A) > 0$ or equivalently there is $n \in 2\mathbb{N}$ such that $\mu(A \cap T^{-n}A) > 0$, concluding that $2\mathbb{N}$ is a set of recurrence.

To see that $2\mathbb{N}+1$ is not a set of recurrence, consider the rotation on two points. Namely, let $X = \{0,1\}$ with sigma algebra $\mathcal{A} = \mathcal{P}(X)$ and measure $\mu(\{0\}) = \mu(\{1\}) = 1/2$ and equip it with the transformation S which brings 0 to 1 and vice versa. Notice that for all $n \in 2\mathbb{N} + 1$ we have that $\{0\} \cap T^{-n}\{0\} = \emptyset$. Therefore, $2\mathbb{N} + 1$ cannot be a set of recurrence.

(b) Show that sets of recurrence possess the Ramsey property: if $R = R_1 \cup ... \cup R_k$ is a set of recurrence, then one of the sets R_1, \ldots, R_k is also a set of recurrence.

We prove this in the case k=2. The general case follows easily by induction. Suppose by contradiction we have a set of recurrence $R = R_1 \cup R_2$ such that neither R_1 nor R_2 is a set of recurrence. Then for every $i \in \{1,2\}$ there exist a system (X_i, A_i, μ_i, T_i) and a set $A_i \in \mathcal{A}_i$, with $\mu(A_i \cap T_i^{-n}A_i) = 0$, for all $n \in R_i \setminus \{0\}$. Now consider the product system $(X_1 \times X_2, \mathcal{A}_1 \otimes \mathcal{A}_2, \mu_1 \otimes \mu_2, T_1 \times T_2)$ and notice that $\mu_1 \otimes \mu_2(A_1 \times A_2) = \mu_1(A_1)\mu_2(A_2) > 0$. Therefore, as R is a set of recurrence there exists $n \in \mathbb{R} \setminus \{0\}$ such that

$$0 < \mu_1 \otimes \mu_2(A_1 \times A_2 \cap (T_1 \times T_2)^{-n} A_1 \times A_2) = \mu_1(A_1 \cap T_1^{-n} A_1) \mu_2(A_2 \cap T_2^{-n} A_2) = 0,$$

 $0 < \mu_1 \otimes \mu_2(A_1 \times A_2 \cap (T_1 \times T_2)^{-n}A_1 \times A_2) = \mu_1(A_1 \cap T_1^{-n}A_1)\mu_2(A_2 \cap T_2^{-n}A_2) = 0,$ where the last equality comes from the fact that $n \in R = R_1 \cup R_2$. This is a contradiction, hence either R_1 or R_2 is a set of recurrence.

(c) Show that if $R \subseteq \mathbb{Z}$ is a set of recurrence, then so is $R \cap m\mathbb{Z}$ for every $m \in \mathbb{Z}$.

Let (X, \mathcal{A}, μ, T) be a measure preserving system, $A \in \mathcal{A}$ with $\mu(A) > 0$, $R \subseteq \mathbb{Z}$ a set of recurrence, and $m \in \mathbb{Z}$. To prove that $R \cap m\mathbb{Z}$ is a set of recurrence, we consider the auxiliary system $(\mathbb{Z}_m, P(\mathbb{Z}_m), \nu, S)$, where $\mathbb{Z}_m = \{0, \dots, m-1\}$, ν is the uniform measure and S is the rotation $Sx = x + 1 \mod m$ for every $x \in \mathbb{Z}_m$. Now, we consider the product system $(X \times \mathbb{Z}_m, \mathcal{A} \otimes P(\mathbb{Z}_m), \mu \otimes \nu, T \times S)$. Given that R is a set of recurrence, there exists $n \in R \setminus \{0\}$ such that

$$\mu \otimes \nu(A \times \{0\} \cap (T \times S)^{-n}A \times \{0\}) > 0.$$

Observe that the left-side of the equation is equal to $\mu(A \cap T^{-n}A) \cdot \nu(\{0\} \cap S^{-n}\{0\})$. Thus, $\{0\} \cap S^{-n}\{0\} \neq \emptyset$, which can only be possible if m divides n. Therefore $n \in (R \cap m\mathbb{Z}) \setminus \{0\}$ is such that $\mu(A \cap T^{-n}A) > 0$, which is the desired conclusion.

P6. Let (X, \mathcal{A}, μ, T) be a measure preserving system and let $A \in \mathcal{A}$ be a set of positive measure. Define its set of return times

$$R(A) = \{ n \in \mathbb{N} : \mu(A \cap T^{-n}A) > 0 \}.$$

Poincare's recurrence theorem asserts that R(A) is non-empty. In this exercise, we want to show that R(A) is also large in some appropriate sense.

(a) Show that R(A) intersects any difference set: if $E \subset \mathbb{N}$ is infinite, then $R(A) \cap (E - E) \neq \emptyset$. Here, $E - E = \{n \in \mathbb{N} : n = a - b \text{ for some } a, b \in E, a > b\}$.

Let $E = \{n_j, j \in \mathbb{N}\}$ be the given set, where n_j is a strictly increasing sequence of integers. Suppose that $R(A) \cap (E - E) = \emptyset$. Then, for any i < j, we have $\mu(T^{-n_i}A \cap T^{-n_j}A) = \mu(A \cap T^{-n_j+n_i}A) = 0$. Thus, the sets $\mu(T^{-n_i}A), i \in \mathbb{N}$ are pairwise disjoint (modulo null sets) and have positive measure equal to $\mu(A)$. This contradicts the pigeonhole principle.

(b) Show that the set R(A) has bounded gaps, that is there exists $k \in \mathbb{N}$ such that for all $m \in \mathbb{N}$ we have $R(A) \cap \{m, m+1, \dots, m+k\} \neq 0$.

Assume the conclusion is false, so that we can find arbitrarily long intervals in $\mathbb N$ that do not contain any element of R(A). Namely, for any $M \in \mathbb N$ we can find (arbitrarily large) $a \in \mathbb N$ such that $\{a, a+1, \ldots, a+M\} \cap R(A) = \emptyset$.

The main idea is to construct a sequence n_i inductively so that R(A) does not contain any of the differences $n_i - n_j$, which would contradict (a).

We construct our set E as follows. Let n_1 be an arbitrary integer not in R(A) and put $n_1 \in E$. Using our assumption, we can find $n'_2 > n_1$ which satisfy the property $\{n'_2, n'_2 + 1, \ldots, n'_2 + n_1\} \cap R(A) = \emptyset$. Then, if we put $n_2 = n_1 + n'_2$ to be the next element in E, we have $n_2 - n_1 \notin R(A)$

Similarly, we find $n_3' > n_2 > n_1$ such that $\{n_3', \ldots, n_3' + n_2\} \cap R(A) = \emptyset$. Thus, if $n_3 = n_2 + n_3'$, our construction gives that $n_3 - n_2, n_3 - n_1$ are not elements of R(A).

Proceeding inductively we construct $n_1 < \ldots < n_k$ such that all pairwise differences of these elements do not belong to R(A). Then, we pick $n'_{k+1} > n_k$ for which we have $\{n'_{k+1}, \ldots, n'_{k+1} + n_k\} \cap R(A) = \emptyset$. Then, we define $n_{k+1} = n'_k + n_{k-1}$ to be the next element in our sequence and it is clear that $n_{k+1} - n_j \notin R(A)$ for all $1 \le i \le k$. In this way, we construct inductively a sequence n_k so that pairwise differences of this sequence do not belong to R(A). We produce an infinite set E such that E - E has trivial intersection with R(A), which is a contradiction.