
Ergodic Theory - Week 1

Course Instructor: Florian K. Richter
Teaching assistant: Konstantinos Tsinas

1 Measure Preserving Systems

P1. Let (X,A, µ) be a probability space, and let T : X → X be a measurable map. Show that T
preserves µ if and only if ∫

f ◦ T dµ =

∫
fdµ (1)

holds for any f ∈ L1(X).

Optional: If X is a Polish space (Hausdorff completely metrizable topological space) and µ is a
Borel probability measure on X show that it suffices to check (1) for any f ∈ C(X).

Hint: Use the fact that any finite Borel measure on a Polish space is regular, namely for any
measurable set A and any ε > 0 there exist open U and compact K such that K ⊆ A ⊆ U and
µ(U \K) < ε.

Assume that T preserves µ. Then (1) holds for indicator functions. Indeed, for any A ∈ A,∫
1A ◦ T dµ =

∫
1T−1A dµ = µ(T−1A) = µ(A) =

∫
1A dµ.

Consequently, (1) holds for simple functions, i.e. functions of the form f =
∑k

i=1 ai1Ai , where
k ∈ N, ai ∈ C and Ai ∈ A for any i = 1, . . . , k. Now let f ∈ L1(X). Then there exists a
sequence of simple functions (fn)n∈N converging to f in L1(X). Then∫

f ◦ Tdµ = ĺım
n→∞

∫
fn ◦ Tdµ = ĺım

n→∞

∫
fndµ =

∫
fdµ.

Conversely, assume that (1) holds for any f ∈ L1(X). Then for any A ∈ A, applying (1) for
f = 1A yields µ(T−1A) = µ(A), showing that T preserves µ. Now suppose that holds for any
f ∈ L1(X).

Now, suppose X is a Polish space and assume that (1) holds for continuous functions, and
let f = 1A ∈ L1(X). Since C(X) is dense in L1(X), there exists a sequence (fn)n ∈ N of
continuous functions converging to f . Moreover, this sequence can be taken bounded, given
that thanks to the regularity of µ (given that X is Polish), we can always find a closed set F
and an open set U such that F ⊆ A ⊆ E and µ(U \ F ) < 1/n, thus we can take

fn(x) =
d(x, U c)

d(x, U c) + d(x, F )
,

which is such that ||fn − f ||1 < 1/n for every n. Then, using the Dominated Convergence
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Theorem:∫
f ◦ Tdµ =

∫
ĺım
n→∞

fn ◦ Tdµ = ĺım
n→∞

∫
fn ◦ Tdµ = ĺım

n→∞

∫
fndµ =

∫
ĺım
n→∞

fndµ =

∫
fdµ.

P2. Let (X1,A1, µ1, T1) and (X2,A2, µ2, T2) be measure preserving systems. Prove that the product
system (X1 ×X2,A1 ⊗A2, µ1 ⊗ µ2, T1 × T2) is also measure-preserving.

Observe that for any sets A1 ∈ A1, A2 ∈ A2, we have

(µ1×µ2)((T1×T2)
−1(A1×A2)) = µ1(T

−1
1 A1)µ2(T

−1
2 A2) = µ1(A1)µ2(A2) = (µ1×µ2)(A1×A2).

The σ-algebra A1 ⊗A2 is generated by the algebra of the sets A1 ×A2 with A1 ∈ A1, A2 ∈ A2

and in this algebra, the measure µ1 × µ2 and the pushforward measure (T1 × T2)(µ1 × µ2)
defined by (T1 × T2)(µ1 × µ2)(A) = (µ1 × µ2)((T1 × T2)

−1(A)) take identical values. Thus, by
Carathéodory’s Theorem, we have that these measures are equal on A1⊗A2 which establishes
our claim.

P3. We consider the torus with the Borel σ-algebra and the Lebesgue measure.

(a) Show that for any a ∈ R, the map Tx = x+ a (mod 1) preserves the Lebesgue measure.

We will use the first exercise for this. It suffices to show that for any continuous function
f : T → C we have ∫

T
f(Tx) dλ(x) =

∫
T
f(x) dλ(x).

We can extend f periodically modulo 1, so that f is a 1-periodic continuous function.
The previous equality can be rewritten as∫ 1

0
f(x+ a) dx =

∫ 1

0
f(x) dx.

However,∫ 1

0
f(x+ a) dx =

∫ 1+a

a
f(x) dx =

∫ 1

a
f(x) dx+

∫ 1+a

1
f(x) dx =∫ 1

a
f(x) dx+

∫ a

0
f(x) dx =

∫ 1

0
f(x) dx

using the 1-periodicity of f .

(b) For each p ∈ N we define the map Tpx = px (mod 1) for all x ∈ [0, 1). Show that the
transformation Tp preserves the Lebesgue measure.

In view of the first exercise, it suffices to show that for any continuous function f : T → C
we have ∫

T
f ◦ Tp dλ =

∫
f dλ.
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The function f is 1-periodic so we have

∫ 1

0
f(px) dλ(x) =

∫ 1
p

0
f(px) dx+ · · ·+

∫ 1

p−1
p

f(px) dx =

1

p

∫ 1

0
f(x) dx+ · · ·+ 1

p

∫ p

p−1
f(x) dx =

1

p

∫ 1

0
f(x)dx+ · · ·+ 1

p

∫ 1

0
f(x)dx =

∫ 1

0
f(x)dx,

where we used the 1-periodicity of f in the penultimate step.

P4. Let (X,A, µ) be a probability space and let T : X → X be an invertible measure preserving
transformation (with respect to µ). Now, at any moment, instead of moving forward by T (that
is, instead of looking at the map x → Tx), we flip a fair coin to decide whether we will use T or
T−1.

The goal is to describe the random system described above by means of a measure-preserving
system. In particular, we want to find a map R such that given a point x and a sequence of coin
tosses ω, we would have that R(ω, x) would produce the same result as the procedure above.

(a) Find a probability space (Y,B, v) and a measure preserving map S that models the sequence
of coin tosses.

Consider Ω = {0, 1}N with the Borel σ-algebra B generated by cylinder sets and the
uniform product measure v. Thus, for any finite string (a1, . . . , ak) of 0’s and 1’s, we have

v ({ω ∈ Ω : ω1 = a1 . . . ωk = ak}) =
1

2k
.

We endow this space with the left-shift S (that is Sω is the sequence such that Sω(n) =
ω(n+ 1) for all n ∈ N), which preserves the measure v. This models the sequence of fair
coin tosses. Indeed, for any element ω of the sample space (i.e. a sequence of coin tosses),
the first coordinate of Snω is the outcome of the n-th coin toss.

(b) Consider the product system (X × Y,A × B, µ × v). Define a measure-preserving map R
on this product space that models the original random system.

We consider the product space Y = Ω × X with the product σ-algebra B × A and the
product measure λ = v × µ. On this space, we define the map R(ω, x) = (Sω, T 2ω1−1),
where ω1 is the first coordinate of ω. We will prove that this transformation preserves
the measure λ and it models the random walk system described in the exercise. Indeed,
given any sequence of coin tosses ω, the transformation R checks the first coordinate of
ω and applies T if ω1 = 1 and T−1 if ω1 = 0. Then, it shifts the sequence ω to the next
coordinate (the next coin toss).

We prove that R preserves the measure λ. We will only need to prove that this holds
for sets of the form B × A, where B ∈ B and A ∈ A, since these generate the product
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σ-algebra. Then, we have

λ(R−1(B ×A)) = λ ({R(ω, x) ∈ B ×A})
= λ ({R(ω, x) ∈ B ×A,ω1 = 0} ∪ {R(ω, x) ∈ B ×A,ω1 = 1})
= λ ({R(ω, x) ∈ B ×A,ω1 = 0}) + λ ({R(ω, x) ∈ B ×A,ω1 = 1})
= λ

(
(ω, x) : ω1 = 0, Sω ∈ B, T−1x ∈ A

)
+ λ ((ω, x) : ω1 = 1, Sω ∈ B, Tx ∈ A)

= λ
((
{ω1 = 0} ∩ S−1B

)
× T (A)

)
+ λ

((
{ω1 = 0} ∩ S−1B

)
× T−1(A)

)
= v

((
{ω1 = 0} ∩ S−1B

))
µ(T (A)) + v

((
{ω1 = 1} ∩ S−1B

))
µ(T−1(A))

= v
((
{ω1 = 0} ∩ S−1B

))
µ(A) + v

((
{ω1 = 1} ∩ S−1B

))
µ(A)

= v(S−1B)µ(A) = v(B)µ(A) = λ(B ×A),

where we used the fact that µ(TA) = µ(T−1A) = µ(A) because T, T−1 are measure
preserving.

P5. A set R ⊆ Z is a set of recurrence if for every measure-preserving system (X,A, µ, T ) and for
all A ∈ A with µ(A) > 0 we have µ(A ∩ T−nA) > 0 for some n ∈ R \ {0}.

(a) Show that 2N is a set of recurrence but 2N+ 1 is not.

Let (X,A, µ, T ) be any measure preserving system. Consider the system (X,A, µ, T 2)
which is also measure preserving and for which Poincaré’s Recurrence Theorem asserts
that N is a set of recurrence for this system. Thus, there is some n ∈ N such that
µ(A∩T−2nA) > 0 or equivalently there is n ∈ 2N such that µ(A∩T−nA) > 0, concluding
that 2N is a set of recurrence.

To see that 2N+1 is not a set of recurrence, consider the rotation on two points. Namely,
let X = {0, 1} with sigma algebra A = P(X) and measure µ({0}) = µ({1}) = 1/2 and
equip it with the transformation S which brings 0 to 1 and vice versa. Notice that for
all n ∈ 2N + 1 we have that {0} ∩ T−n{0} = ∅. Therefore, 2N + 1 cannot be a set of
recurrence.

(b) Show that sets of recurrence possess the Ramsey property: if R = R1 ∪ . . . ∪Rk is a set of
recurrence, then one of the sets R1, . . . , Rk is also a set of recurrence.

We prove this in the case k = 2. The general case follows easily by induction. Suppose by
contradiction we have a set of recurrence R = R1 ∪ R2 such that neither R1 nor R2 is a
set of recurrence. Then for every i ∈ {1, 2} there exist a system (Xi,Ai, µi, Ti) and a set
Ai ∈ Ai, with µ(Ai ∩ T−n

i Ai) = 0, for all n∈ Ri \ {0}. Now consider the product system
(X1×X2,A1⊗A2, µ1⊗µ2, T1×T2) and notice that µ1⊗µ2(A1×A2) = µ1(A1)µ2(A2) > 0.
Therefore, as R is a set of recurrence there exists n ∈ R \ {0} such that

0 < µ1 ⊗ µ2(A1 ×A2 ∩ (T1 × T2)
−nA1 ×A2) = µ1(A1 ∩ T−n

1 A1)µ2(A2 ∩ T−n
2 A2) = 0,

where the last equality comes from the fact that n ∈ R = R1∪R2. This is a contradiction,
hence either R1 or R2 is a set of recurrence.

(c) Show that if R ⊆ Z is a set of recurrence, then so is R ∩mZ for every m ∈ Z.
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Let (X,A, µ, T ) be a measure preserving system, A ∈ A with µ(A) > 0, R ⊆ Z a set of
recurrence, and m ∈ Z. To prove that R ∩ mZ is a set of recurrence, we consider the
auxiliary system (Zm, P (Zm), ν, S), where Zm = {0, . . . ,m− 1}, ν is the uniform measure
and S is the rotation Sx = x+1 mod m for every x ∈ Zm. Now, we consider the product
system (X × Zm,A ⊗ P (Zm), µ ⊗ ν, T × S). Given that R is a set of recurrence, there
exists n ∈ R \ {0} such that

µ⊗ ν(A× {0} ∩ (T × S)−nA× {0}) > 0.

Observe that the left-side of the equation is equal to µ(A∩T−nA) ·ν({0}∩S−n{0}). Thus,
{0}∩S−n{0} ≠ ∅, which can only be possible if m divides n. Therefore n ∈ (R∩mZ)\{0}
is such that µ(A ∩ T−nA) > 0, which is the desired conclusion.

P6. Let (X,A, µ, T ) be a measure preserving system and let A ∈ A be a set of positive measure.
Define its set of return times

R(A) = {n ∈ N : µ(A ∩ T−nA) > 0}.

Poincare’s recurrence theorem asserts that R(A) is non-empty. In this exercise, we want to show
that R(A) is also large in some appropriate sense.

(a) Show that R(A) intersects any difference set: if E ⊂ N is infinite, then R(A)∩ (E−E) ̸= ∅.
Here, E − E = {n ∈ N : n = a− b for some a, b ∈ E, a > b}.

Let E = {nj , j ∈ N} be the given set, where nj is a strictly increasing sequence of integers.
Suppose that R(A) ∩ (E − E) = ∅. Then, for any i < j, we have µ(T−niA ∩ T−njA) =
µ(A ∩ T−nj+niA) = 0. Thus, the sets µ(T−niA), i ∈ N are pairwise disjoint (modulo null
sets) and have positive measure equal to µ(A). This contradicts the pigeonhole principle.

(b) Show that the set R(A) has bounded gaps, that is there exists k ∈ N such that for all
m ∈ N we have R(A) ∩ {m,m+ 1, . . . ,m+ k} ≠ 0.

Assume the conclusion is false, so that we can find arbitrarily long intervals in N that do
not contain any element of R(A). Namely, for any M ∈ N we can find (arbitrarily large)
a ∈ N such that {a, a+ 1, . . . , a+M} ∩R(A) = ∅.
The main idea is to construct a sequence ni inductively so that R(A) does not contain
any of the differences ni − nj , which would contradict (a).

We construct our set E as follows. Let n1 be an arbitrary integer not in R(A) and
put n1 ∈ E. Using our assumption, we can find n′

2 > n1 which satisfy the property
{n′

2, n
′
2+1, . . . , n′

2+n1}∩R(A) = ∅. Then, if we put n2 = n1+n′
2 to be the next element

in E, we have n2 − n1 /∈ R(A)

Similarly, we find n′
3 > n2 > n1 such that {n′

3, . . . , n
′
3 + n2} ∩ R(A) = ∅. Thus, if

n3 = n2 + n′
3, our construction gives that n3 − n2, n3 − n1 are not elements of R(A).

Proceeding inductively we construct n1 < . . . < nk such that all pairwise differences of
these elements do not belong to R(A). Then, we pick n′

k+1 > nk for which we have
{n′

k+1, . . . , n
′
k+1 + nk} ∩ R(A) = ∅. Then, we define nk+1 = n′

k + nk−1 to be the next
element in our sequence and it is clear that nk+1−nj /∈ R(A) for all 1 ≤ i ≤ k. In this way,
we construct inductively a sequence nk so that pairwise differences of this sequence do
not belong to R(A). We produce an infinite set E such that E−E has trivial intersection
with R(A), which is a contradiction.
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